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The question: how do dating technologies affect the outcome?

The world is experiencing a change in search&dating technologies

• costs are severely reduced
• number of potential partners is almost unbounded
• 75M people use Tinder every month

Simultaneously, we face new demographic phenomena

• 41% US women of 25-44y are single and childless (Morgan Stanley)

Can it be an “evolutionary mismatch/trap”?

• our preferences developed over generations
• same as search and mating strategies
• rapid change in one without another might be problematic

Result: lower costs and wider menus may leave fewer people matched.

The results are based on two assumptions about preferences:

1. preferences are correlated
2. preferences are selective 1 / 21



Background

• Two-sided search and matching with frictions
• block-segregation result: endogenous partitioning of types

[McNamara and Collins, 1990, Eeckhout, 1999]
• when agents obtain imperfect feedback, reducing costs can lead to

infinite search [Antler and Bachi, 2022]

• Women are more selective than men
[Fisman et al., 2006, Kelley and Malouf, 2013]
“supported by self-report surveys, speed-dating studies, analysis of
on-line and newspaper personal ads, and laboratory analog studies ”

• Stable matching: marriage market and college admissions
[Gale and Shapley, 1962]

• Lower search costs increase social integration
[Ortega and Hergovich, 2017]
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Example for n = 4 men/women, familiarity degrees k = 4, 2,
selectivity s = 1/2
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Model: marriage market with familiarity graph

• set of n men M and set of n women W

• familiarity graph F prescribes who knows whom
familiarity is always mutual: w ∈ F (m) ⇐⇒ m ∈ F (w)

• regularity: each m knows k women, each w knows k men

Correlated preferences: agents agree on ranking of those that they know

• let each woman w have the same ranking P̄w over M

• (let each man m have the same ranking P̄m over W ) - not needed

• Preferences P are derived from P̄ restricted by graph F :
for each x ∈ M ∪W , Px = P̄x |F (x)

Selective preferences: only a constant share is acceptable

• each m finds smk women acceptable, |w : wPmm| = smk

• each w finds swk men acceptable, |m : mPww | = swk
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Stable matchings

Our solution concept is stability:
- nobody is matched with unacceptable partner,
- no blocking pair (m,w) that prefers to be together but is not

• Stable matching always exists [Gale and Shapley, 1962]

• If preferences are homogeneous for one side, stable matching is
unique

• What is the size of this stable matching?

• In the example with n = 4, k = 2, and sm = sw = 0.5:
depending on the graph, |µ| varies from 1 to 3

• What is the average size of a stable matching for a random graph?
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Average size of stable matching

As the choice set increases, there are two effects on the matching size:

• positive: each agent knows more acceptable partners

• negative: each non-top-ns agent has lower chances
(in a complete graph only the top ns agents are matched)

• the two effect balance each other

Consider the case sm = sw = s. Define sparse graph:

• each agent knows exactly 1 acceptable partner, k = 1/s.

Calculate the size of stable matchings for random sparse graph.
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Equal selectivity

Proposition 1: If sm = sw = s, then stable matchings for sparse graph,
k = 1/s and complete graph, k = n have the same average size.

Proof. Let index denote preference, mn is most preferred, m1 is least
preferred.

⟨|µk=1/s |⟩ =
n∑

m=1

Prob(m is matched) =

n∑
m=1

Prob(his acc .woman finds m acceptable) =
n∑

m=1

C k−1
m−1

C k−1
n−1

=

n∑
m=1

k−1∏
i=1

m − i

n − i
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Result 1

n∑
m=1

k−1∏
i=1

m − i

n − i
=

(k − 1)(k − 2) . . . 2 · 1 + k(k − 1) . . . 3 · 2 + (k + 1) . . . 4 · 3 + . . .

(n − 1)(n − 2) . . . (n − k + 1)
=

=
(k + 1)(k − 1) . . . 3 · 2 + (k + 1)k(k − 1) . . . 4 · 3 + . . .

(n − 1)(n − 2) . . . (n − k + 1)
=

=
n(n − 1)(n − 2) . . . (n − k + 1)

k(n − 1)(n − 2) . . . (n − k + 1)
=

n

k
= sn = |µn|
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Intermediate case

• So far we know about two extremes: for sparse and complete graphs

⟨|µ|⟩ = sn

• What can be said about the intermediate case?

• (m,w) is mutual-best if they are most preferred familiar partners:
∀m′ ∈ F (w) \ {m},w ′ ∈ F (m) \ {w} we have mPwm

′ and wPmw
′

Corollary: For k > 1/s, average number of mutual-best pairs is n/k .

• remove mutual-best agents, then on average we have:
• n − n/k remaining agents
• k − 1 familiar agents

• the ratio is the same (n − n/k)/(k − 1) = n/k

• at best, we can repeat it sk times: sk ∗ n/k = sn
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Simulations: n = 100, sm = sw = 0.5
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Same example for n = 4 men/women, familiarity degrees k =

4, 2, selectivities sm = 1, sw = 1/2
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Result 2

Let sm > sw , and consider a sparse graph for women: each woman knows
1 acceptable man (while each man knows ksm ≥ 1 acceptable woman).

Proposition 2: If sm > sw , then stable matchings for sparse graph has
higher average size than for complete graph.

⟨|µk=1/sw |⟩ = n −
n∑

m=1

(
1−

k−1∏
i=1

m − i

n − i

)smk

≥ nsw

Proof. Consider some man m and his best acceptable woman w . He has
same probability of being acceptable for w as before. But now m might
have a second chance with his second best acceptable woman; and so on.

Empirical simulations show that ⟨|µk |⟩ monotonically decreases from
k = 1/sw to k = n.
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Variable selectivity

Selectivity might depend on the size of the choice set.

In a field experiment, [Fisman et al., 2006] find that in small groups
sm = sw = s, and that sw (k) decreases with k .

With this assumption, sparse graph gives nsm pairs, while complete graph
gives nsw pairs.

Consider simulations with n = 100

men and women have homogeneous preferences

As k grows from 2 to 100, sw linearly decreases from 0.5 to 0.15
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Simulations: sm = 0.5, sw decreases from 0.5 to 0.15
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Simulations for general case

Let each agent x ’s utility ux(y) from matching with partner y have three
random components distributed uniformly on [0, 1]:

• the common component of partner y denoted as v common
y ,

• the random idiosyncratic component v idiosyncratic
xy ,

• and the mutual preference component, vmutual
xy = vmutual

yx

The total utility is their weighted sum:

ux(y) = αv common
y + (1− α)(βv random

xy + (1− β)vmutual
xy ).

n = 100, k = 1, . . . , n # of simulations mc = 10

Preview of results:

• equal selectivity: sparse=full, intermediate slightly worse
• for general preferences: higher k – larger matching
• different selectivity: size for sparse graph twice larger
• for general preferences: intermediate optimum
• varying selectivity: stronger effect
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Simulations: β = 0.5, sm = 0.5, sw decreases from 0.5 to 0.15
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Simulations: β = 0, sm = 0.5, sw decreases from 0.5 to 0.15

17 / 21



Simulations: β = 1, sm = 0.5, sw decreases from 0.5 to 0.15

18 / 21



Conclusions

these results provide a novel explanation of that how lower search costs
on a dating market can result in a smaller number of pairs

Further steps:

• prove monotonicity

• more general preferences

• different familiarity graphs

• similar questions...
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